
AD-A275 284 4

/A 9199DTICi•ELECTF

JAN 1 9 1994'

gd

.........

The NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to ensuring U.S. leadership in aeronautics
and space science. The NASA Scientific and Technical Information (STI) Program plays
an important part in helping NASA maintain its leadership role.

The NASA STI Program provides access to the NASA STI Database, the largest collection
of aeronautical and space science STI in the world. The Program is also NASA's institutional
mechanism for disseminating the results of its research and development activities.

A number of specialized services help round out the Program's diverse offerings, including
creating custom thesauri, translating material to or from 34 foreign languages, building
customized databases, organizing and publishing research results.

For more information about the NASA STI Program, you can:

"* Phone the NASA Access Help Desk at (301) 621-0390

"* Fax your question to NASA Access Help Desk at (301) 62 1-0134

"* Send us your question via the Internet to help(a sti.nasa.gov

"* Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934

DmEA*IMN* D I SLTROC

.0

&ml

•,.94-01697 '
* -

NASA CENTER FOR AEROSPACE INFORMATION

800 ELKRIDGE LANDING ROAD LINTHICUM HEIGHTS, MD 21090 1301) 621-0390

ATTN: (PHONE) ,
DATE OF REQUEST: 01/07/94

USER ID- 02672 46
ORDER CONTROL NUMBER 940107095746
USER SECURITY LEVEL SECRET RESTRICTED / •

ENCLOSED IS YOUR ORDER FOR 0001 HARDCOPY COPY ',9'X0A ACCESSION

NUMBER N89-26445 "-

T1TLE. GEKATOO: A general knowledge acquisition tool "
REPORT NUMBEt REPT-89-033

DOCUMENT CLASSIFICATION UNCLASSIFIED
DISTRIBUTION LIMITATION STATEMENT: UNLIMITED

QUESTIONS CONCERNING THIS ORDER SHOULD BE DIRECTED TO DOCUMENT REQUEST SERVICES, NASA CASI, 4301) 621-0390.
PLEASE INCLUDE YOUR OROER CONTROL NUMBER WITH YOUR INQUIRY.

02672-940107095746
DEPT OF DEFENSE
DEFENSE TECHNICAL INFORMATION CENTER
ATTN: DTIC-OCP/JOYCE CHIRAS
CAMERON STATION BLDG 5

ALEXANDRIA VA 22304

DIPARTIMENTO DI ELETFRONICA - POLITECNICO DI MILANO

GFKATOO: a general knowledge acqnisition tool]

Andrea Bonarini,
Maria Caterina Gallo, Marco Guida.

Report n. 89-033 --

NI I sif ,•. .

Maro 1989I,

Matzo 1989 9 ,?

Ipt

IWI GEKATOO: a general knowledge acquisition tool

Autihon: Andrea Bonarini, Maria Caterina Gallo, Marco Guida.

Rl2prt an.: 89-033

Abstar:
In this paper we outline the structure of a tool supporting a knowledge engineer

(XE) in the knowledge acquisition process for building Knowledge Based Sys-
tems (KBS) for different kind of applications.
We believe it is impossible to make a machine performing automatically this

process, since too many competences should be transferred from the KE to a
computer. In order to. develop an effective support system, a model of the ICE's
knowledge is needed.

GEKATOO implements a proposal for such a model, partitioning the expert's
knowledge into three areas. The first two are related to the domain of application
and the classes of application. The third one enables domain and application in-
dependent analysis of the reasoning methods to be used by the KBS to generate
new knowledge from the one already present. The result of the application of
GEKATOO is a conceptual model of the knowledge needed to implement a KBS
solving the task defined by the expert.
A first prototype of the system has been implemented in Common Lisp and

CLOS on Xerox 1186 machines.

Index tfnrms: Artificial Intelligence, Knowledge Acquisition,.
-- oooOooo--

To obtain a copy of this report please fill in your name and

address and return this page to:

Laboratorio di Calcolatori

Dip.to di ziettronica - ?oli~tec.ico di Milano

P.zza L. da Vinci 32- 20133 Milano, italy

N AM E

ADDRESS ..

...............................

Introduction

The implementation of a KBS involves different problems: knowledge acquisition

(Clancey, 1985), knowledge formalization (Brachman 1979; Newell 1980; Breuker
and Wielinga 1987), choice of the programming environment, and so on.

computer-based tool supporting the KBS development has to cope with all these

problems at different levels.

We developed a conceptual framework (KRF - Knowledge Representation

Framework) defining the different levels hi terms of: conceptual modeling,

representation formalism selection, formalization, and choice of an implementation
environment (Bonarini, Gallo, Guida, in press).

According with Breuker and Wielinga (in press), we think that the true bottleneck

of the development of a KBS concerns the expert's knowledge conceptualization
more than its elicitation. In fact, the real problem is to make the conceptualization

of the expert's knowledge fitting the reasoning mechanisms available to build

KBSs.

In this paper we focus on the conceptual modeling process (Breuker and

Wielinga, 1987) describing the corresponding part of KRF, namely GEKATOO

(GEneral Knowledge Acquisition TOOl).

Our approach reflects the idea that a tool supporting the KE in this phases should

allow him to follow the expert's own conceptual order in providing knowledge

using the terminology he is familiar with.

The KE activity is supported by GEKATOO to achieve the syntactic completeness

of the elicited knowledge, i.e. to ensure that all the entities mentioned are defined

and related to other ones.

In order to support the KE in this activity, we partition his knowledge into three

areas, corresponding to the different knowledge features needed to emulate the

expert solving a problem.

The knowledge in the first area allows to describe the domain of application in

terms of basic structures like relation, element, state, and so on.

1

The second knowledge area contains the description of the possible classes of

application (such as diagnosis, planning, etc.) given by means of the basic

competences needed to cope with the corresponding problems. Competences are

defined in terms of action sche ,rata at different level of abstraction.

In the last area, we define the characteristics of reasoning methods used to infer

knowledge from given knowledge.

GEKATOO helps the KE, interacting with the expert, to generate the conceptual

model from the structures given in the three areas.

The conceptual model is a formalization of the knowledge elicited from the expert

to solve a particular problem.

This formalization is performed instantiating the structures represented in the

three areas by means of primitives implemented in COMMON LISP and CLOS.

This allows to "run" the conceptual model in order to test some of its features.

In the following, we will describe the parts of the system in details and show

how it works on a simple application. In particular, we will show in details only

the knowledge structures most relevant to understand GEKATOO. All the other
knowledge structures are formally described in the GEKATOO reference manual

(Bonarini, Cremonesi, Ferrari, Gallo, Guida, 1988).

The domain of application area

A domain representation is a collection of descriptions of elements and of

relations among them.

The level of abstraction and complexity of the description depends on the specific

domain and on the point of view of the expert. A domain element can be a simple

object or a class of objects. Therefore, a relation can hold among objects, classes or

combinations of the two.

2

The KE activity is performed according to his own knowledge acquisition

strategies. On the other side, the Expert, which owns the knowledge about the

problem, should be allowed to provide it according to his own model. The

interaction between the two is supported by GEKATOO in order to enable a

cooperative Knowledge Acquisition process.

Thus, the interaction with the expert may start defining a relation or an element, at

his choice, since both the alternatives can be accepted by the KE.

In this knowledge area we define a structure for the description of domain

elements:

ELEMENT
NAME: element-name
ISA: classname
ATTRIBUTES: element_attr_list
STATES: state__ist

The slot NAME contains a unique identifier for the element to be defined.

The attribute ISA contains the name of the class which the element belongs to.

The slot ATTRIBUTES is filled with the list of the attributes of the element

considered relevant by the domain expert. Each attribute is fully defined by a

structure describing: whether its value can vary in time or not, its description unit

(e.g. number, kilometers, color, ..) and its acquisition method (see below).

The slot STATES contains the list of the states relevant for the element. Each

state is described by a name and a list of constraints on attributes values.

Each relation is described according to the following structure:

RELATION
NAME: relationname
PARTICIPANTS: arguments-list
TYPE: relationtype
ACQUISITIONMETHODS: a_mlist
ASPECTS: aspectsjlist

3

The slot PARTICIPANTS contains the ordered list of the entities involved in the

relation. An entity may be an object, a class of objects, an attribute or a state.

For instance, the relation PARTOF 201 may hold between the class ENGINE

and the class CAR, while the relation PART_OF_90 may hold bevvween the object

FIREENGINE_#1249947 and the object MY_FIAT_TIPO.

The content of the slot TYPE should be a predefined reference name, identifying

a class of relations. It allows to refer to relations more efficiently. This is used by

knowledge structures belonging to the classes of application area, and will be

further discussed in the next section. In order to fix ideas now, let us think at

TYPE names such as: CAUSE-EFFECT, MATHEMATICS, etc. For instance, the

relation GREATER_27 is a MATHEMATICS relation, while the

CAUSEPOISONING_908 one is a CAUSEEFFECT relation.

The slot ACQUISITIONMETHODS can be used to record means to verify if

the relation holds in the actual world. The contents of this slot will be further

discussed in the following.

The slot ASPECTS can be Lsed to add information at deeper levels. For instance

it can be used to describe the functional, causal, temporal, or teleological aspects of

the relation. The description of each aspect needs a different structure.

Acquisition methods can be associated both to relations and to attributes of

elements, in order to define how they can be obtained either from the real world or

by inference from already acquired knowledge. In the following we will describe

the acquisition methods structure for the attributes, being the relations ones

analogoi :,.

Each acquisition method can be described using the following structure:

ACQUISITION-METHOD
NAME: a m name
TYPE: amjtype
SOURCES: info_sources
DESCRIPTION: amndescription
APPLICABILITYCON]D: state_list
COST: a m cost

4

The slot TYPE states whether the acquisition method concerns deduction or

observation. In the first case the attributes which the method refers to are deduced
from relations and attributes. In the second case, the attribute values are obtained

from the world, through interaction with the uter. In both cases, the domain expert
must decide which acquisition method is more adequate and supply the knowledge

needed to describe it.

The slot SOURCES defines the sources of information which the acquisition

method will be applied to. Each source is described in terms of single elements or

pairs (element . attribute).

The slot DESCRIPTION contains a description of how the acquisition method

should be applied. In the case of "observation" the slot is filled with the acquisition
procedure, defined as a set of instructions for the end user. In the case of

"deduction", the slot contains the keyword h'FER, meaning that a generic
infzrential mechanism should be applied to the SOURCES defined by the domain

expert in order to obtain the required information.

The slot APPLICABILITYCOND contains the list of the states to be verified in
order to actually apply the acquisition method.

The attribute COST defines the cost of the application of the method, as stated by

the domain expert on a given numerical range.

The classes of application area

The classes of application are inspired by the concept of category of application

presented by many authors (Kitto and Boose, 1987; Clancey, 1986; Hayes-Roth et

al., 1983).

In this knowledge area we define a class of application in terms of the

competences underlying the execution of the related tasks. We define a
competence as a set of specific actions together with the abstract entities on which

to perform them.

An abstract entity is a place holder specific for each class of application and

referring to entities described in the domain of application. The interaction with the

expert is aimed at relati:., these abstract entities to domain structures.

5

The use of abstract entities allows to define a class of application independently
from the domain description.

We assume that the competences are partly shared among different ciaoses of

application, and partly specific to each of them.

In GEKATOO, competences are described as action schemata.

An action schemata is defined using the following structure:

ACTION
NAME: actionname
ELEMS: elem type-list
MODALITY: plan

The slot ELEMS contains the list of the abstract entities characteristic for the

action. A name is given to each abstract entity in order to refer to it within the

description of the action. Moreover, to each name :s associated the type of the

domain entity which the abstract entity refers to. For instance, the ELEMS list for

the action Recover is ((Malfunctioning. STATE)).

In a similar context, Breuker and Wielinga (in press) introduce the concept of

metaclasses, in order to represent semantic knowledge about the elements involved

in their task description layer (analogous to our classes of appdcation area). In

GEKATOO, all the semant*.: knowledge associated to the ELEMS concerns their
use and it is embedded in the MODALITY description of the ACTION.

The slot MODALITY describes the plan for the execution of the action. It is

defined organizing actions at a lower level of abstraction by means of the canonical
control structures: sequence, condition, and -vhile-loop. Each action referred to in

the plan description is, in turn, described by an action schema. The plan description
language we use is implemented using COMMON LISP in order to obtain an

executable action specification.

Some of the actions MODALITY can refer directly to a class of reasoning

methods. The representation of such methods is described in the reasoning method

area.

6

The selection within the specified class of a suitable reasoning method for a

specific action is up to the KE, which has to perform this task stimulating

requirements from the expert.

The Reasoning Methods area

In this area are described the methods which can be used to deduce new

knowledge from already acquired knowledge.

The kind of knowledge belonging to this area is different from the one of the

other areas. In fact, here we give prototypical descriptions of deduction procedures

to be used by the KE, in the form supplied in GEKATOO. The only interaction

with the expert needed by this area is aimed to identify the domain entities to be

used in such procedures.

The reasoning methods (e.g. "plain backward chaining", "CF backward

chaining", "generate and test") are defined in terms of operations to be performed

on reasoning entities. A reasoning entity structure (e.g. "p-rule", "frame") is

described by means of a set of components. For instance, the production rule can

be defined as:

REASONING ENTITY
NAME: P-RULE
COMPONENTS: ((Premise. (LIST OF DOMAINENTITY))

(Consequent. (LISTOF DOMAINENTITY)))

Reasoning methods are described giving the different contents of the following

slots:

* NAME: a unique identifier for the reasoning method.

* TYPE: one of the predefined general types of reasoning methods. This types

are identified on the basis of an operating strategy common to a set of

reasoning methods. For instance the BACKWARD- CHAINING type is used

for SIMPLE-BACKWARD-CHAINING, BACKWARD-

CHAINING-ON-FRAMES, and CF-BACKWARD-CHAINING.

7

REASONING_ENTITIES: a list of reasoning entities which the reasoning

method algorithm refers to.

CHAR-ELEM: list of the variables referred to in the algorithm. Each of them

is associated with the type of domain or abstract entity on which the algorithm

has to work.

ALGORITHM: the description, given in an executable language, of the

algorithm used by the specific reasoning method. This description may

contain also explicit references to different reasoning methods. For instance,

the BW-FW reasoning method algorithm refers to

SIMPLE-BACKWARD-CHAINING and SIMPLE-FORWARD- CHAINING,

making explicit their connections step by step.

An example of the use of GEKATOO

Let us have a look to the interaction between a KE and an expert aimed at the

conceptualization of the knowledge required to diagnose car electrical

malfunctioning.

Let us suppose that part of the conceptual model has been already defined.

Namely, we already know that the car has an electrical plant, which is constituted

by some devices like: a battery, a starting gear, headlights, starting connections,

and cables connecting all of them.

In this case, the expert shown a preference for the description of domain elements

and relations among them, instead of focusing on diagnosis procedures. In

particular, in the conceptual model, we have an instance describing a battery in

terms of:

ELEMENT
NAME: Battery
IS.A: Electricaldevice
ATTRIBUTES: 0
STATES: (Dead)

Moreover, let us suppose that the following relation had been just defined:

8

RELATION
NAME: Power_003
PARTICIPANTS: ((Battery. Working) (Headlights. Working))
TYPE: CAUSEEFFECT
ACQUISITIONMETHODS: 0
ASPECTS: 0

This definition is incomplete, since the Working state of Battery and the structure

describing Headlights have not been yet defined. Therefore, according with the
principle of syntactic completeness, which rules the conceptual modeling process,

those entities are put in waiting lists for undefined states and undefined elements.

At this time, many undefined entities should be specified. The choice of the next

entity to be defined is performed by the KE on the basis of his own experience and
intuition. In this case, the GEKATOO interface provides a set of active windows

supporting the acquisition of the undefined state.

The need to define "Working" leads to the specification of a constraint stating that
the Voltage of the battery should be GREATER than 12 Volts. Since the attribute
Voltage had not been defined, it enters in the undefined attributes list.

This process may continue in the same way, until the expert considers that all the
relevant entities involved in the task execution are described. At this point, the KE
may try to define the competences needed to diagnose that kind of malfunctioning.

The classes of application area provides action schemata describing those

competences.

Let us see now one of the most relevant action schemata provided for this class of

application.

9

ACTION
NAME: Reconstructcauses
ELEMS: ((Effect tobe justified. (STATE))

(Selected-cause. (STATE)))
MODALITY:

(LET ((Causes
(deduce

(Reasoning-method (TYPE BACKWARDCHAIN))
(Relation (TYPE CAUSEEFFECT))
Effect_tobe_justified)))

(IF (1 (LENGTH Causes)
(SETQ Selected_cause (select Causes)) ;then
(SETQ Selected cause (FIRST Causes)))) ;else

The MODALITY specifies that the action consists in finding for a given effect the
relationships with its possible causes as defined by the corresponding structure in

the domain.

This action schema instance states that the search should be performed on

relations of type CAUSEEFFECT and using backward chaining in order to
identify causal chains. If more than one cause is found, a selection must be

performed. The competence refering to "select" is detailed by another action

schema instance.

This description of how we would like the KBS work, is used at a meta-level in

order to state the need for the definition of all the possible causal chains for every
Effect, and the classification of the domain states considered Effects by the expert.

The connection with the reasoning methods area is due to the invocation of the

action "deduce".

The type of reasoning method is predefined in the action schema, and it is used to
limit the choice among the possible reasoning methods to be applied in this class of
application.

In GEKATOO the type of reasoning method to be used is predefined, according

to considerations about the characteristic elements of the class of application and

the type of domain entities which they refer to.

10

When the slot MODALITY contains the action "deduce", the KE has to map the
reasoning entities with the characteristic elements of the current action and the type

of domain entities which the elements themselves refer to.

In our example, the KE may choose the SIMPLEBACKWARDCHAINING
reasoning method, which works on PRULES. Thus, given the current situation, he
has to elicit the chain of relations of TYPE CAUSE.EFFECT which may be

backwardchained in order to deduce the Cause from the Effect.

Discussion

The state of the art in knowledge acquisition models reveals that research efforts
have been mainly concerned with modeling classes of application. We propose a

complete model of the knowledge involved in the conceptualization process. In

fact, GEKATOO embeds structures to represent knowledge about classes of
application, domain, and reasoning methods, and the relationships among them.

GEKATOO is conceived as an interactive tool for the KE, supporting his
interaction with the expert, but leaving him the control of the knowledge

acquisition process as a whole.

At present, GEKATOO does not account for the problems underlying semantic

completeness of the conceptual modeL In particular, as regard the elicited
knowledge, it doesn't consider issues of homonymy, sinonymy, inconsistency and
lack of a whole piece of knowledge. This last problem regards cases in which part

of the not yet elicited knowledge is loosely connected with the one already defined.

References

Bonarini A., Cremonesi C., Ferrari A., Gallo C., Guida M., 1988, GEKATOO:

the user manual, Milan Polytechnic Artificial Intelligence Project, Department of
Electronics of Politecnico di Milano.

Bonarini A., Gallo C., Guida M., in press, KRF: a methodological framework for

representing knowledge, Computers and Artificial Intelligence, 29-2.

11

BrachmanR.J., 1979, On the epistemological status of semantic networks. In
N.V.Findler (ed.) Associative networks: representation and use of knowledge

by computers, Academic Press, New York, 3-50.

Breuker J., Wielinga B., 1987, Use of models in the interpretation of verbal
data. A. Kidd (Ed.) Knowledge elicitation for expert systems: a practical

handbook, Plenum Press, New York.

Breuker J., Wielinga B., in press, Models of expertise in knowledge acquisition,

in Guida G., Tasso C. (Eds.), Expert Systems Design, North-Holland.

• Clancey W.J., 1985, Heuristic Classification, Artificial Intelligence, 27 215-251.

* Hayes-Roth F.,Waterman D.A., LenatD.B. (eds.), 1983, Building Expert

Systems, Addison-Wesley Publ. Company, Readings, MA.

Kitto C.M., Boose J.H., 1987, Selecting knowledge acquisition tools and

strategies based on application characteristics, Proc. 2nd AAAI Knowledge
Acquisition for KBS Workshop, Banff, Canada.

Newell A., 1980, A physical symbol system. Cognitive Science, 4, 135-183.

12

